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A N  E L L I P S O I D A L  D R O P  O R  V O R T E X  

IN  A N  I N H O M O G E N E O U S  F L O W  

It. M. Garipov UDC 532.527 

All motions of an ideal incompressible fluid with a piecewise constant density and vorticity which are 
discontinuous on the surface of an ellipsoid are found. A tangential discontinuity on the ellipsoid and linear 
growth in the liquid velocity at infinity are allowed. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  In the well-known Kirchhoff elliptical vortex [1] the fluid has a 
continuous velocity and rests at infinity. It is assumed in the present paper that  the vortex is piecewise- 
constant, and the vorticity- or density-discontinuity surfaces are ellipsoids (ellipses). However, a tangential 
velocity discontinuity on the ellipsoid and linear growth in the velocity at infinity are allowed. Nontrivial 
spatial solutions exist for such a generalized formulation. All such solutions are found in this work. This class 
of solutions contains, in particular, all well-known generalizations of the Kirchhoff vortex [2--4] (all of them are 
plane). Our generalization has a physical meaning [5] and is also of interest in connection with Lavrent'ev's 
turbulence model [6]. For brevity, plane solutions are not presented. 

We consider the motion of an ideal.incompressible fluid which has density p0 inside ellipsoid S and a unit 
density outside ellipsoid S. Let the vortex w = V x u be independent of the point x = (xl, x2, zs) in space both 
inside and outside S but dependent on the time t and equal to w0 and wl, respectively. The following notation 
is used: u(x,  t) = (Ul, U2, •3) is the fluid velocity, p(x, t) is the pressure, and V = (0 /0Xl ,  0 /0x2,  0 /0x3) .  

All variables are dimensionless. There must be no external forces in a drop (p0 ~ 1). In the case of 
a vortex (p0 = 1), the potential mass forces are included in the pressure and has no effect on the motion. 
Therefore, it is assumed that external forces are absent. The coordinate origin is placed at the center of 
the ellipsoid, which is assumed to move without acceleration. Then the equation of the surface of S is f = 
x .  Ax - 1 = 0, where A is a symmetric, positively defined matrix. The Euler equations are valid for the fluid. 
The nonpenetration condition must be held both inside and outside S: 

of 
0-t- + u .  V f  = 0 for f = 0, (1.1) 

and the pressure must be continuous. Capillary forces are disregarded. At infinity we have u(x, t) = O(Ix]) , 
where Ix[ = ~ is the vector length. 

2. E q u a t i o n s  of  M o t i o n .  
T h e o r e m .  

where Bo and BI are functions of t. 
The proof is omitted. 

U 
Box inside S, 
B lx  outside S, 

We substitute the function u into the equation of incompressibility: 

3 
spBo = ~ Boii = O, spB1 = O. 

i=1 
(2.1) 
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Substituting the expression for u into the equation of fluid motion inside S, we have 

/30 + B02 = (/30 + B02) *, p = -20. x .  (/30 + S02)x + q0 

Here, the dot and the asterisk denote a derivative with respect to time and a conjugate matrix, respectively; 
q0(t) is an arbitrary function. Similar equations hold outside S with an arbitrary function q(t). Since the 
pressure is defined with accuracy to the addition of an arbitrary function of time, one can let q0 = 0. The 
limiting values of u on S both inside and outside the ellipsoid are then substi tuted into the nonpenetration 
condition (1.1) and the pressure-continuity condition on S. We recast the resulting system of equations as 
follows: 

po(Bo + B 2) - B:  - B~ + qA = O, Bo + B20 - (Bo + B2) * = O, 
(2.2) 

A + ABo + B~A = O, (Bo - B1)A -1 + A- I (Bo  - BI)* = O, 

where q = sp(-p0B02 + B~)/spA.  The left-hand sides of the first and the last (after multiplication by A) 
equations have zero traces by virtue of (2.1). Therefore, system (2.2) contains 22 independent equations for 
22 unknowns A,/3o, and B:  on the manifold (2.I). 

For p0 = 1, the problem has the nontrivial solution/3o = B:. Ellipsoid S is a liquid surface in this 
case. For p0 ~ 1 and ]3o = B1, system (2.2) has the same form as the equations of motion of a single ellipsoid 
[7-10] and has energy, circulation, and angular moment  integrals. Below, we consider only the case B0 r B:,  
wherein analogs of the above-mentioned integrals are available. 

The last equation of (2.2) signifies that  matrix F = (Bo - B1)A -1 is antisymmetric.  We introduce F 
as an unknown function and exclude matrix B1 = Bo - F A  from the first equation. The resulting equation is. 
then multiplied by A -1 on the right and ,21 is excluded 

(p0 - 1)(/30 + B~)A - t  + ~" + B o f  - FB~ - F A R  + qI = O, 

where I is an identity matrix.  We separate the symmetric and antisymmetric parts taking into account the 
second equation of (2.2). If p0 = 1, we have 

= o; (2.3)  

G =_ BoF - FB~ - F A F  + qI = O. (2.4) 

If p0 ~ 1, the symmetric part  is solved uniquely with respect to/30 + B2: 

1 ( p 0 -  1)(/~0 + B 2) = H ( A , G ) ,  

where H is a matrix function of the stated arguments. This assertion is obvious in the coordinate system in 
which the matrix A is diagonal. System (2.2) is reduced to the normal form of order of 17 on the manifold 
spB0 = 0: 

+ H A  - 1 - A - 1 H = O ,  B o + B  2 = ~ g ,  , ; t + A B o + B ~ A = O .  
po - 1 

3. Particular Solution: Rigidly Rotating Ellipsoid. System (2.2) has a solution that describes 
the rigid rotation of ellipsoid S around the x3 axis with constant angular velocity w0. We write the solution 
in the coordinate system rotating together with the ellipsoid. 

For p0 = 1, we have 

A = 0 A l l  A 2 3  . 

0 A~2 A33 

The relative fluid velocity is u = (2wo/Al l ) (Al lx2  + A23x3, - A l l x l ,  0) (it equals zero inside S). The flow is 
steady in this coordinate system. 

When p0 ~ 1 ,  there is an axisymmetric solution. A nonaxisymmetric solution exists only for p0 < 1 
and has the form 
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A n  0 A13 ) 
A = 0 A22 0 , 

A31 0 A33 

where A22 > 0, A33 > 0, and A22 > A33 are arbitrary; 

-- A33 
4 A33/A22); A13=+2A33~(A122po)A22 ; All = (A22 - A33)(1 + 1 - Po 

4. I n t eg ra l s  of  M o t i o n .  System (2.2) has the following integrals: 

u = f l (0 ,  A13xl + A33x3, -A22x2) outside S, 

/ 1 - P0 
f l  = +w0,/A22,-n-- _ - v  tzi22 A33)" 

J1 = det A, J2 = sp((poB~B~ - B ~ B 1 ) A - 1 ) ,  ,13 = (poBo - B1)A  -1 - A - I (poB~  - B~), 

J4 = sp(((B~ - S o ) A - I ) 2 ) ,  J5 = sp( ( (S ;  - B1)A-1)2). 

5. So lu t ion  of  t h e  E q u a t i o n s  of  V o r t e x  M o t i o n .  When p0 = 1, system (2.2) is integratable in 
elementary functions. Antisymmetric  matrix F is an integral of (2.3). When F = 0, the solution is trivial: 
B0 = B1. It will therefore be assumed that  F # 0. Since system (2.2) is invariant with respect to orthogonal 
transformations of the coordinate system, we direct the x3 axis so that matrix F has the form 

F =  2f  0 0 , f # 0  
0 0 0 

(do not confuse with f = x .  A x -  1). We denote 

1 1 
B = B o -  ~ F A  = ~ ( B o  + B1), 

and write Eq. (2.4) as B F  - F B *  + qI  = 0. Writing it termwise, we obtain 

( B l l  0 B 1 3 )  
B = 0 Bll B23 , q = 0. (5.1) 

0 0 B33 

Substituting Bo = B + ( 1 / 2 ) F A  and B1 = B - ( 1 / 2 ) F A  into the expression for q, we have q = 0. Therefore, 
the second equation of (5.1) is a consequence of the first. Substituting Bo = B + ( 1 / 2 ) F A  into the second 
and third equations of (2.2) and taking into account that B F  = FB*  and spB = 0, we obtain a normalized 
system of equations of order 8 with respect to the unknown functions B13, B23, and A: 

1 (FA) 2 1 / ~ - / ~ * + B  2 - B  2 .+~ -~(FA) 2.=0, A+AB+B*A=0. (5.2) 

This system contains an arbitrary function B n ( t ) .  

We transform to the coordinate system rotating around the x3 axis. This means substitution of variables 
in Eqs. (5.2): 

S ---* B '  = UBU*,  B ~ UBU* = JB'+ P B '  - B 'P.  
Here, 

U =  - s i n 0  cos0 0 ; P = U U * =  0 0 0 �9 
0 0 1 0 0 0 

Matrix A is transformed in a similar manner.  Matrix F does not change, inasmuch as it commutes with U. 
We choose U such that  B~3 = 0. The equations for B I take the form 

B h  ' ' = = -- BIlB13 + f2A~l 0, ~}B~3 + f2A~2 0, 

where A~i is the cofactor of element A~j of matrix A ~. Since the system does not contain the variable 0, its 
order decreases to 7. Recall that  0 is the angle between the x~ axis and the immovable abscissa. It is remarkable 
that ,  by choosing an appropriate substitution of variables, one can eliminate the arbitrary function B~l(t ). 
This substitution is equivalent to '.he following transformation of the coordinates, time, and B~3: 

525 



| 

, ,  / ' (  )) x i ~ h x i (i = 1, 2), x~3 ~ h2x~3, t ~ h-2dt, B~3 ~ h-lB13 h = exp l(r)d'r . 
0 

It is therefore sufficient to consider only the case of B~I = 0. We write the resulting system of equations in 
the variables A~j (the primes are omitted): 

20) Jr f2A31 = 0, 2tol) Jr f2A32 = 0, Z~ll ---- 2~A21 "4" 4c~ /~21 = I~(--All Jr A22) n u 2~A32, 
(5.3) 

2x22 = -2~A2, ,  z~3, = ~tx3~ + 2wA33, 2X32 = -~A3, ,  2X33 = 0. 

Here, w = (I/2)B13. Note that Eq. (5.2) for A in the rotating coordinate system must be multiplied by 
A - I  both on the left and on the right. After this, one should use the rule of differentiation of an inverse 
matrix: d(A-1)/dt = -A-I~4A -1. Note next that Aij = (A-1)iiA and A = detA is an integral of motion. 
The variables Aij have a clear geometrical meaning. The point of tangency of the ellipsoid and the plane 
xk = coast has the coordinates (AAk~)-I/2 (Ak~, A~2, Ak3). The projection of the ellipsoid onto the plane 
x3 = 0 is bounded by the ellipse A22Xl 2 Jr AllX22 -- 2A21xlX2 ~--- (Al lA22 -- A21)/A,  

System (5.3) has the following integrals: 

"71 = (A l l  Jr A22)A33 -- A21 -- A22, 72 = A33, 73 = Al l  Jr A22 "4- 4 f - 2 w  2, 74 ---- wA32, 
(5.4) 

75 4f-2co2A22 Jr Al lA22 A21, A2 (AllA22 _ 2 = - -  = A21)A33 Jr 2A21A31A32 - -  ALIA22 - -  A22A21 . 

It follows from integrals 71 and 72 that the plane section x3 = 0 of the ellipsoid retains its shape and the 
ellipsoid constantly touches the immovable plane z3 = V/-~-~A. 

All the variables in integrals (5.4) are easily expressed in terms of w. The function w can be found by. 
means of the quadrature 

dw 2 
- f2t  = f 4:- A33 ' = > o) 

This paper would not have been written without the help of 0.  M. Lavrent'eva. The author thanks 
her sincerely. 
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